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A feedforward three-layer neural network is proposed to predict conductivity (k) of pure gases at
atmospheric pressure and a wide range of temperatures based on their critical temperature (Tc), critical
pressure (Pc) and molecular weight (MW). The accuracy of the method is evaluated and tested by
its application to experimental conductivities of various gases which some of them are not used in
the network training. Furthermore, the performance of the proposed technique is compared with that
of conventional recommended models in the literature. The results of this comparison show that the
proposed neural network outperforms other alternative methods, with respect to accuracy as well as
extrapolation capabilities. Besides, conventional conductivity correlations are usually used for a limited
range of temperature and components while the network method is able to cover a wide range of
temperatures and substances.

© 2008 Elsevier Masson SAS. All rights reserved.
1. Introduction

Thermal conductivity of gases is one of the most important
thermal properties, since it is needed in the analysis of heat
transfer equipment. Data on thermal conductivity are required for
mathematical modeling and computer simulation of heat trans-
fer processes. Over the years, the thermal conductivity has been
measured and compiled for many gases. In general, the estima-
tion methods of thermal conductivity can be divided into two
broad categories. In one category, thermal conductivity is esti-
mated through using relations based on the theory of gases. The
second category consists of correlations relating thermal conduc-
tivity to other properties such as critical temperature, critical pres-
sure and molecular weight, which can be easily measured. Table 1
shows most of the methods and correlations currently being used
in estimation of thermal conductivity.

Neural networks have been used extensively in various fields of
chemical engineering over the last two decades. Turias et al. stud-
ied the application of pattern recognition and artificial intelligence
techniques in the characterization of a multi-phase realistic disor-
dered composite and in a design of a multiple regression model
to estimate effective thermal conductivity [1]. Sablani and Rahman
presented an artificial neural network (ANN) model for the pre-
diction of thermal conductivity of food as a function of moisture
content, temperature and apparent porosity [2]. The model was
able to predict thermal conductivity with a mean relative error of
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12.6%. Sablani et al. suggested an artificial neural network model
for the prediction of thermal conductivity of bakery products as
a function of product moisture content, temperature and apparent
density [3]. The model was able to predict thermal conductivity
with a mean relative error of 10%. Zhou et al. focused on modeling
the electrical conductivity of recombined milk by artificial neural
network [4]. They aimed to establish a nonlinear relationship that
accounts for the effect of milk constituents (protein, lactose, and
fat) and temperature on the electrical conductivity of recombined
milk. Jalali-Heravi et al. developed a quantitative structure-activity
relationship method using an ANN for predicting the thermal con-
ductivity detector response factor [5].

The objective of this work is to develop a neural network model
for prediction of thermal conductivity of pure gases at atmospheric
pressure over a wide range of temperatures. The network inputs
are the gas temperature, critical temperature, critical pressure and
molecular weight. The next section gives a brief overview of the
artificial neural network used in this study. Then, the proposed
method as well as the data used in its development and valida-
tion is presented. Section three contains the results and discussion
about the proposed method.

2. Methodology

Considering the inherent ability of artificial neural networks to
learn and recognize nonlinear and complex relationships, they can
be used to predict conductivity of gases. The proposed method is
based on a neuromorphic model. The following steps are those
required to develop the neuromorphic models to predict conduc-
tivity.
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Nomenclature

b j bias of jth neuron
F activation or transfer function
K conductivity
MW molecular weight
N number of input signals to jth neuron
N number of data points
O j output of jth neuron
Pc critical pressure
T temperature

Tc critical temperature
w ji synaptic weight corresponding to ith synapse of jth

neuron
xi ith input signal to jth neuron

Subscripts

exp experimental
P predicted

Table 1
The summary of thermal conductivity correlations and methods

Source Comment

First category

Pidduck model [6] The first attempt to treat the case of polyatomic molecules rigorously is the simple model of Bryan, to which Pidduck extended the
Chapman–Enskog method for an infinitely dilute gas of spherical molecules to the case of perfectly rough rigid elastic spherical
molecules possessing rotational energy that can be converted into translational energy.

The Eucken approximation [7] He determined the role of internal degree of freedom on conductivity of a dilute gas of polyatomic molecules and correlated it with the
specific heat ratio.

The approximation of
Ubbelohde [8]

He considered that molecules of dilute gas in different energy states could be considered as chemical species, which a flux of energy is
due to the diffusion of these species.

Theory of Enskog [9] Enskog made the first important contribution to calculating conductivity of a dense gas by considering the case of hard spheres.

Theory of Longuet-Higgins and
Pople [10]

Longuet-Higgins and Pople have calculated conductivity of a dense gas of rigid spheres assuming the existence of a collisional
mechanism alone.

Theory of Horrocks and
McLaughlin [11,12]

They suggested conductivity in terms of frequency and assuming face-centered cubic lattice geometry.

Theory of Longuet-Higgins and
Valleau [13]

They considered that the molecules interact with a square-well potential.

Theory of Davis et al. [14] Davis et al. carried out a more elaborate treatment of the transport properties of a square-well fluid computing both the convective and
collisional contribution on the basis of a modified Boltzmann equation.

Theory of Sengers [15] His treatment includes the effect of the perturbation of the distribution function from the local equilibrium value which was omitted by
Longuet-Higgins and Valleau.

Choh and Uhlenbeck [16],
Cohen [17] and Bogolubov [18]

In general, these theories are based on density expansions of a generalized Boltzmann equation, and yield expressions for conductivity in
terms of a series expansion in the density.

Second category

Misic and Thodos [19,20] For pure component, low pressure (<350 kPa) hydrocarbon gases, they recommend two correlations. One of them for methane and
cyclic compounds below reduced temperatures of 1.0, and another for these hydrocarbons above reduced temperatures of 1.0 and for
other hydrocarbons at any temperature.

Bromley and Wilke [21] For pure non-hydrocarbon monatomic gases at low pressure (up through 1 atm).

Bromley and Wilke [21] For pure non-hydrocarbon linear molecules gases at low pressure (up through 1 atm).

Stiel and Thodos [22] For pure non-hydrocarbon nonlinear molecules gases at low pressure (up through 1 atm).

Mao-Gang He et al. [23] They suggested a new correlation to estimate the thermal conductivity of the dense fluid for halogenated hydrocarbon refrigerants.

Edward F. Pliński [24] He recommended a correlation to estimate thermal conductivity of CO2, N2, He, Xe, CO, O2 and Ar as a function of temperature.
2.1. Artificial neural networks

The concept of neural network models (NNMs) appears to be
a recent development. However, this field was established before
the advent of computers in attempts to replicate the learning ca-
pabilities of biological neural systems by modeling the low-level
structure of the brain. Neural networks are computational systems,
either hardware or software, which mimics the computational abil-
ities of biological systems by using numbers of simple intercon-
nected artificial neurons [25].

A neural network consists of numbers of simple processing el-
ements called neurons. Each neuron of the neural network is con-
nected to others by means of direct communication links, each
with an associated weight, which represents information being
used by the network to solve the problem. The output of a neu-
ron is computed from the following equation:

O j = f

(
n∑

i=1

w ji xi + b j

)
(1)

where O j = output of jth neuron, f = activation or transfer func-
tion, b j = bias of jth neuron, w ji = synaptic weight corresponding
to ith synapse of jth neuron, xi = ith input signal to jth neuron,
n = number of input signals to jth neuron.

As Eq. (1) shows bias is an activation threshold added to the
product of input data and their respective weighting factors. The
most commonly used activation or transfer functions that work
well are logarithmic sigmoid, hyperbolic tangent sigmoid and lin-
ear functions. Weighted sum of all input plus the bias of neuron
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will become the input of activation function. It should be noted
that an important characteristics of the activation function is its
differentiability, since it facilitates the training of the network
through gradient-based training algorithms. The activation function
serves mainly as a type of filter or gate that lets some signals move
forward and stops others as they progress from the input nodes to
the output nodes. Thus, the smaller the value of the neuron’s out-
put is, the less its effect on the next neurons would be. There are
several types of ANN’s such as feedforward network, radial basis
function network, ART network and auto associative network [26].
Conventional feedforward networks are the most commonly used
one for the function approximation. Hence, the network used in
this study is of this type. Multi-layer feedforward networks consist
of groups of interconnected nodes arranged in layers correspond-
ing to input layer, hidden and output layers.

The input layer receives all input signals and dispatches them
to other neurons. Network’s outputs which are provided by the
neurons in the output layer are actually the final results of the
neuromorphic model. Consequently, number of nodes for the in-
put and output layers are defined by the number of independent
and dependent variables, respectively. The input layer is fed with
input variables and passes them into the hidden layer(s) where
the processing task takes place. Finally, the output layer receives
the information from the last hidden layer and sends the results
to an external source. The network can therefore be interpreted
as a form of input/output model, whose parameters are synaptic
weights and biases. This type of network is able to approximate
almost all types of functions regardless of their complexities [26].

During the training algorithm, input data are fed to the input
layer of the network and the difference between the output layer
results and the desired outputs (i.e., network error) is used as a cri-
terion for adjustment of network’s synaptic weights and biases. At
the beginning, all synaptic weights and biases are initialized ran-
domly. Then, the network is trained (i.e., its synaptic weights are
adjusted) by an optimization algorithm until it correctly emulates
the input/output mapping.

Selecting the minimum number of data points required to train
the neural network is frequently a difficult task, a heuristic guide-
line states that the number of data points should be 10 times as
connections in the network [27]. The optimal network architec-
ture for a specific problem is achieved through a trial and error
procedure, in which the structure of the network is changed and
the resulting network is trained in such a way that the average
root mean square (RMS) error is minimized. The structure of the
network can be changed through varying the number of hidden
layers as well as the number of neurons in each hidden layer.
According to Cybenko [28], a network that has only one hidden
layer is able to approximate almost any type of nonlinear map-
ping. However, the determination of the approximate number of
nodes for the hidden layer is difficult, and is often done by trial
and error. Too few neurons in the hidden layer impair the network
and prevent the network to get trained appropriately. On the other
hand, too many nodes allow the network to memorize the pat-
tern (i.e., develop a correlation) presented without capturing the
underlying relationship between the input and output variables.
These problems that occur during neural network training is called
“overfitting”. In this case, the error on the training set gets a very
small value, but when the network is exposed to new data leads to
unacceptably large errors. In other words, the network has mem-
orized the training examples, but it has not learned to generalize.
In order to let the network to get trained with sufficient generaliz-
ability, the available data should be divided into three subsets. The
first subset is the training set, which is used to train the network
(i.e., determination of the optimum values of synaptic weight and
biases). The second subset is the validation set; the error on the
validation is monitored during the training process. The validation
Table 2
List of Compounds used in the development of the neuromorphic model

No. Component type No. of data points Tc Pc MW

1 Acetone 6 508.1 46.4 58.08
2 Acetylene 9 308.3 61.4 26.038
3 Ammonia 11 405.6 112.8 17.031
4 Argon 10 150.8 48.7 39.948
5 Benzene 8 562.05 48.95 78.114
6 Bromine 3 584.1 103.0 159.808
7 Carbon dioxide 22 304.2 73.8 44.01
8 Carbon disulfide 2 552.0 78.0 76.131
9 Carbon tetrachloride 5 556.4 45.0 153.823

10 Chlorine 5 417.0 76.0 70.906
11 Chloroform 3 536.4 54.0 119.378
12 Cyclohexane 1 553.5 40.73 84.161
13 Deuterium 3 38.4 16.4 4.032
14 Ethane 6 305.32 48.72 30.07
15 Ethyl acetate 3 523.2 38.3 88.11
16 Ethyl chloride 4 460.4 52.0 64.515
17 Helium 15 5.2 2.27 4.003
18 Heptane 5 540.2 27.4 100.204
19 Hexene 2 504.0 31.43 84.161
20 Hydrogen 15 33.2 13.0 2.016
21 Krypton 3 209.4 55.0 83.8
22 Methane 8 190.6 46.0 16.043
23 Methyl alcohol 2 512.64 80.97 30.042
24 Methylene chloride 4 378.0 61.5 84.9
25 n-Butane 4 425.12 37.96 58.123
26 Neon 5 44.4 27.6 20.183
27 Nitric oxide 3 180.0 65.0 30.006
28 Nitrogen 14 126.2 33.9 28.013
29 Nitrous oxide 2 309.6 72.4 44.013
30 n-Pentane 4 469.7 33.7 72.15
31 Oxygen 12 154.6 50.5 31.999
32 Propylene 5 364.9 46.0 42.081
33 R 11 (Trichlorofluoromethane) 2 471.1 44.72 137.368
34 R 12 (Dichlorodifluoromethane) 6 385.1 41.3 120.913
35 R 13 (Chlorotrifluoromethane) 4 302.0 38.7 104.459
36 R 22 (Chlorodifluoromethane) 4 369.28 49.86 86.468
37 Sulfur dioxide 5 430.8 77.8 64.063
38 Water vapor 8 647.3 220.5 18.015
39 Xenon 3 289.7 58.4 131.3

Total 236

error will normally decrease during the initial phase of training
and so does the error corresponding to the training data set. How-
ever, when the network begins to overfit the data, the error on
the validation set will typically begin to rise. When the validation
error increases for specified number of iterations, the training is
stopped. The weights and biases corresponding to minimum vali-
dation and training errors are considered as the optimum values
of the synaptic weights and biases. The third subset is the testing
data set; this set of data, which is not used during the training, is
used to obtain the overall accuracy of the network and to compare
the performance of various network structures.

2.2. Data acquisition and analysis

Perhaps one of the most important decisions in the develop-
ment of the neuromorphic model is availability of reliable exper-
imental sources of data for the model. A set of 236 experimental
data points for hydrocarbon and non-hydrocarbon compounds was
used to develop the neuromorphic model. These data include ex-
perimental published data on critical temperature, critical pressure,
molecular weight and thermal conductivity for pure components
[29–39]. The data set used in the development of the neuromor-
phic model contains both hydrocarbon and non-hydrocarbon com-
pounds of various types shown in Table 2. Table 3 summarizes
the overall range of experimental data points used in the develop-
ment of the multi-layer perceptron network proposed in this work.
Although there are more data points available in open literature,
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Table 3
Range of pure components properties

Property Minimum Maximum

Temperature (K) 90.2 2000
Critical temperature (K) 5.20 647.3
Critical pressure (bar) 2.27 220.5
Molecular weight 2.016 159.808
Conductivity (W/m ◦C) 0.0038 0.412

since some of them are not obtained through experimental mea-
surement and are the results of estimation, they were excluded
from the data points used in this study.

After identifying and collecting the data set, the next step is
the selection of input variables, which are model’s independent
variables. The available correlations for prediction of conductivity
at constant pressure are essentially based on the assumption that
conductivity can be described as a function of temperature, critical
temperature, critical pressure and molecular weight as follows:

k = f (T , Tc, Pc,MW) (2)

Following this approach, temperature, critical temperature, critical
pressure and molecular weight were used as the inputs of the ANN
model for the prediction of conductivity for pure gases.

2.3. Neural network training

Once the input data have been selected, the next step is to de-
velop the artificial neural network architecture; a network with
only one hidden layer was selected as the starting network struc-
ture. In order to find the number of neurons in the hidden layer
a constructive approach was used [40]. Based on the construc-
tive approach, a small number of neurons are used in the hidden
layer and if the error of the trained network does not meet the
desired tolerance the number of neurons in the hidden layer is in-
creased by one and training cycle and performance evaluation is
repeated. This procedure is continued until the trained network
performs satisfactorily (i.e., its training, validation and testing er-
rors are lower than the target goal).

The feedforward network was trained by Levenberg Marquardt
algorithm [41–43]. Applying the constructive approach to design
the neural network model for the estimation of conductivity led
to a three-layer network with four neurons in input layer, eight
neurons in hidden layer and one neuron at output layer.

2.4. Selection of optimal configuration

The performance of a trained network can be measured to some
extent by the errors on the training, validation and test data sets,
but it is often useful to investigate the network response in more
detail. Regression analysis was done to assess the network capa-
bility for conductivity prediction. The coefficient of determination,
R2, was used as a measure to evaluate how the trained network
estimation is compatible to the experimental data.

Also, different neural network topologies were compared using
their mean relative errors (MRE) and mean square errors (MSE).
The MRE and MSE are defined with the following equations:

MRE = 1

N

N∑
i=1

|kexp − kp |
kexp

(3)

MSE = 1

N

N∑
i=1

(kexp − kp)2 (4)

N is the number of data points, and kexp and kp are the experi-
mental and predicted values of thermal conductivity, respectively.
Table 4
The MRE, MSE and R values for the different neural network configurations

No. of neurons MRE MSE R-value

5 9.5299 1.2079 × 10−5 0.9986
8 7.4339 7.5283 × 10−6 0.9991

10 5.4241 3.8302 × 10−6 0.9996
12 5.7747 3.9396 × 10−6 0.9996
15 7.3112 6.3613 × 10−6 0.9993
20 8.6723 1.4370 × 10−5 0.9983

3. Results and discussion

Table 4 shows the MRE, MSE and R values calculated for var-
ious neural network configurations differing with respect to their
number of hidden layer neurons. The configuration with minimum
error measures (i.e., MRE and MSE), and appropriate R-value, was
selected as the best network architecture. According to Table 4,
the best neural network configuration has one hidden layer with
ten neurons. The variation of the training error for the best neural
network is presented in Fig. 1.

Fig. 2 illustrates the correlation between the simulation results
of the neural network and the experimental training data points.
The perfect fit (output equal to targets) is indicated by the solid
line. The close proximity of the best linear fit to the perfect fit, as
observed in Fig. 2, shows a good correlation among the network
predictions and the experimental data.

Also, the performance of the best developed network was
tested using another data set consisting of 96 data points not
previously used for the network training. The results of the test
indicate that the MRE and MSE for the proposed model are about
5.424% and 3.8302 × 10−6, respectively. Fig. 3 indicates correlation
between the predicted and experimental test data of thermal con-
ductivity.

The network outputs with the test data set are plotted ver-
sus the targets as stars. The perfect fit (output equal to targets)
is indicated by the solid line. The slope and the y-intercept of the
best linear regression relating targets to the network outputs are
respectively 1.0045 and 1.2269 × 10−4 which nearly overlaps the
perfect linear fit. The correlation coefficient (R-value) between the
network predictions and the experimental test data is 0.9996. This
shows a very good correlation among the simulated and test data.

Table 5 summarizes the results of applying the neural net-
work model and other methods to predict the thermal conductivity
of pure gases. Also, the experimental values of conductivities are
given in the table for comparison. This table shows that the ac-
curacy of the proposed method is almost more than the accuracy
of the other correlations despite the number of input variables re-
quired for the proposed method is less than that of most other
alternative methods. While some of gases shown in the table were
not used in the training, we applied the proposed neural network
to them to assess the extrapolation capability of the model. It
should be notified that there is no unique correlation to estimate
thermal conductivities over the wide range of components and
temperatures given in Table 5. Therefore, based on the component
type and temperature range, the best correlations were selected in
each case to predict the conductivities to be compared with the
network model estimates.

Indeed, one of important advantage of the developed ANN
model is that a single trained ANN can cover a wide range of
temperature and molecular types of gases while other proposed
correlations have some limitations with this respect. The correla-
tions reported in the literature are valid only for specific gases.
For instance, for pure non-hydrocarbon monatomic gases and non-
hydrocarbon linear molecules at low pressure (up to 1 atm), Brom-
ley [21] suggested two distinct correlations to predict the gas ther-
mal conductivity. Also, Stiel and Thodos [22] presented a correla-
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Fig. 1. A schematic of error variation during training.

Fig. 2. Correlation of experimental data versus neural network predictions for training data set.
tion for pure non-hydrocarbon nonlinear molecules at low pressure
(up to 1 atm). These correlations have higher average errors for
polar compounds (e.g., ammonia, sulfur dioxide and water vapor
in Table 5). These correlations, in addition to temperature, critical
temperature, critical pressure and molecular weight, require accu-
rate values for the heat capacity at constant volume and also va-
pors viscosity which is usually not available for compounds at any
temperature (e.g., carbon dioxide at 1500 K and carbon monox-
ide at 81.88 and 91.88 K in Table 5). Misic and Thodos [19,20]
recommended two correlations for pure component, low pressure
(<350 kPa) hydrocarbon gases. One of their correlations has been
proposed for methane and cyclic compounds below reduced tem-
peratures of 1.0, and the other one has been recommended for
all hydrocarbons above reduced temperatures of 1.0. These correla-
tions, in addition to the input data needed for the neural network
model, requires the heat capacity at constant pressure. The Artifi-
cial Neural Network (ANN) model proposed in this article is based
on the critical temperature, critical pressure and molecular weight
that is available for all gases. This is one of the advantages of the
ANN model with respect to other correlations.

4. Conclusions

A neural network based model was developed for the predic-
tion of thermal conductivity of pure gases at atmospheric pressure
as a function of temperature. The model input variables are tem-
perature, molecular weight, critical pressure and temperature. The
best architecture of the feedforward network, obtained by trial and
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Fig. 3. Correlation of experimental data versus neural network values of thermal conductivity for the test data set.

Table 5
Comparison of the proposed ANN model with experimental data and other correlations

No. Compound Temp.
(K)

Experimental
conductivity
(W/m ◦C)

The ANN
prediction
(W/m ◦C)

RE (%) Other
correlations
(W/m ◦C)

RE
(%)

1 Acetone 300 0.0115 0.0125 8.69 0.0101(2) 12.17
400 0.0201 0.0211 4.97 0.0187(2) 6.96

2 Acetylene 293 0.0218 0.0206 5.50 0.0213(2) 2.29
400 0.0332 0.0333 0.30 0.0332(2) 0.00

3 Ammonia 353 0.0301 0.0292 2.99 0.0355(5) 17.94
400 0.0364 0.0346 4.94 0.0424(5) 16.48

4 Argon 273.2 0.0163 0.0173 6.13 0.0166(3) 1.84
491.2 0.0267 0.0280 4.86 0.0265(3) 0.74

5 Benzene 319.11 0.0126 0.0127 0.79 0.0118(2) 6.34
400 0.0195 0.0199 2.05 0.0189(2) 3.07

6 Carbon dioxide 273.1 0.0146 0.0148 1.36 0.0147(4) 0.68
400 0.0246 0.0249 1.21 0.0248(4) 0.81
473 0.0313 0.0305 2.55 0.0306(4) 2.23
600 0.0431 0.0398 7.65 0.0402(4) 6.77
1100 0.0744 0.0738 0.80 0.0835(4) 12.23
1500 0.0974 0.0980 0.61 (6)

7 Carbon monoxide(1) 81.88 0.0071 0.0071 0.00 (6)

91.88 0.0080 0.0079 1.25 (6)

273 0.0221 0.0222 0.45 0.0237(4) 7.23
291 0.0237 0.0236 0.42 0.0249(4) 5.06

8 Carbon tetrachloride 319.11 0.0071 0.0067 5.63 0.0072(5) 1.40
456.88 0.0112 0.0124 10.71 0.0111(5) 0.89

9 Chlorine 300 0.0089 0.0097 8.98 0.0084(4) 5.61
10 Chloroform 319.11 0.0080 0.0071 11.25 0.0071(2) 11.25
11 Ethane 239.11 0.0149 0.0142 4.69 0.0144(2) 3.35

300 0.0218 0.0217 0.45 0.0214(2) 1.83
500 0.0516 0.0496 3.87 0.0509(2) 1.35

12 Ethyl alcohol(1) 293 0.0154 0.0106 31.16 0.0112(2) 27.27
373 0.0215 0.0167 22.32 0.0193(2) 10.23

13 Ethylene(1) 250 0.0152 0.0167 9.86 0.0150(2) 1.31
273 0.0183 0.0196 7.10 0.0174(2) 4.91
300 0.0214 0.0230 7.47 0.0203(2) 5.14
400 0.0342 0.0365 6.72 0.0329(2) 3.80
500 0.0491 0.0509 3.66 0.0468(2) 4.68
600 0.0653 0.0668 2.29 0.0615(2) 5.81

14 Helium 144 0.0928 0.0947 2.04 0.1059(3) 14.11
273.2 0.1418 0.1401 1.19 0.1456(3) 2.67
373.2 0.1731 0.1754 1.32 0.1807(3) 4.39
489 0.2250 0.2155 4.22 0.2181(3) 3.06

(continued on next page)
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Table 5 (Continued)

No. Compound Temp.
(K)

Experimental
conductivity
(W/m ◦C)

The ANN
prediction
(W/m ◦C)

RE (%) Other
correlations
(W/m ◦C)

RE
(%)

15 Heptane 300 0.0120 0.0112 6.66 0.0107(2) 10.83
500 0.0325 0.0308 5.23 0.0327(2) 0.61

16 Hexane(1) 273 0.0125 0.0103 17.6 0.0093(2) 25.6
298 0.0138 0.0119 13.76 0.0117(2) 15.21

17 Hydrogen 250 0.1561 0.1574 0.83 0.1604(4) 2.75
373 0.2233 0.2166 3.00 0.2156(4) 3.44
450 0.2510 0.2513 0.11 0.2418(4) 3.66
600 0.3150 0.3148 0.06 0.2968(4) 5.77
800 0.3840 0.3839 0.02 0.3744(4) 2.50

18 iso-Butane(1) 273 0.0138 0.0140 1.44 0.0130(2) 5.79
373 0.0241 0.0229 4.97 0.0248(2) 2.90

19 iso-Pentane(1) 273 0.0125 0.0121 3.20 0.0110(2) 12.00
373 0.0220 0.0195 11.36 0.0221(2) 0.45

20 Krypton 491.2 0.0145 0.0153 5.51 0.0149(3) 2.75
21 Methane 200 0.0218 0.0221 1.37 0.0207(2) 5.04

300 0.0343 0.0361 5.24 0.0322(2) 6.12
400 0.0484 0.0517 6.81 0.0464(2) 4.13

22 Methyl acetate(1) 273 0.0102 0.0091 10.78 0.0081(2) 20.58
293 0.0118 0.0102 13.55 0.0097(2) 17.79

23 Methyl chloride(1) 273 0.0092 0.0111 20.65 0.0088(2) 4.34
319.11 0.0125 0.0135 8.00 0.0117(2) 6.40
373 0.0163 0.0167 2.45 0.0154(2) 5.52
456.88 0.0225 0.0225 0.00 0.0215(2) 4.44
484.66 0.0256 0.0247 3.51 0.0236(2) 7.81

24 n-Butane 273 0.0135 0.0136 0.74 0.0128(2) 5.18
400 0.0264 0.0246 6.81 0.0280(2) 6.06

25 Neon 373.2 0.0580 0.0550 5.17 0.0470(3) 18.96
26 Nitric oxide 200 0.0186 0.0162 12.90 0.0202(4) 8.60
27 Nitrogen 273 0.0230 0.0231 0.43 0.0242(4) 5.21

400 0.0333 0.0325 2.40 0.0326(4) 2.10
900 0.0607 0.0613 0.98 0.0651(4) 7.24

28 Nitrous oxide 273 0.0159 0.0146 8.17 0.0152(5) 4.40
29 n-Pentane 273 0.0128 0.0118 7.81 0.0108(2) 15.62

293 0.0144 0.0131 9.02 0.0128(2) 11.11
30 Oxygen 173 0.0164 0.0164 0.00 0.0189(4) 15.24

200 0.0182 0.0185 1.64 0.0195(4) 7.14
350 0.0307 0.0304 0.97 0.0298(4) 2.93
500 0.0417 0.0409 1.91 0.0414(4) 0.71

31 Propane(1) 250 0.0129 0.0131 1.55 0.0121(2) 6.20
273 0.0151 0.0153 1.32 0.0146(2) 3.31
300 0.0183 0.0180 1.63 0.0177(2) 3.27
373 0.0261 0.0258 1.14 0.0271(2) 3.83
400 0.0295 0.0289 2.03 0.0309(2) 4.74
500 0.0417 0.0418 0.23 0.0455(2) 9.11

32 R 12 300 0.0097 0.0095 2.06 0.0094(5) 3.09
373 0.0138 0.0125 9.42 0.0125(5) 9.42

33 R 21(1) 300 0.0088 0.0082 6.81 0.0082(2) 6.81
400 0.0135 0.0122 9.62 0.0134(2) 0.74
500 0.0181 0.0171 5.52 0.0186(2) 2.76

34 R 22 400 0.0170 0.0179 5.29 0.0169(2) 0.58
35 Sulfur dioxide 273 0.0087 0.0087 0.00 0.0096(5) 10.34

373 0.0119 0.0118 0.84 0.0144(5) 21.00
36 Water vapor 353 0.0218 0.0233 6.88 0.0275(5) 26.14

450 0.0299 0.0293 2.00 0.0407(5) 36.12
600 0.0422 0.0424 0.47 0.0573(5) 35.78
750 0.0549 0.0547 0.36 0.0767(5) 39.70

37 Xenon 491.2 0.0093 0.0114 22.58 0.0083(3) 10.75

(1) Not used in the training of the proposed ANN.
(2) The correlation of Misic and Thodos [19,20].
(3) The correlation of Bromley for pure non-hydrocarbon monatomic gases [21].
(4) The correlation of Bromley for non-hydrocarbon linear molecules [21].
(5) The correlation of Stiel and Thodos [22].
(6) The vapors viscosity is not available for these compounds at given temperature.
error, consists of one hidden layer with ten neurons. Application of
the proposed ANN model to the training and test data indicates
that it is able to predict thermal conductivity of pure gases with a
considerably lower relative error than that of other alternative cor-
relations. Also, it should be mentioned that the number of input
required data of the ANN method is less than most other proposed
correlations. On the other hand, the correlations suggested in the
literature have some limitation with respect to applicable temper-
ature range and the gas molecular structure. But the ANN model
developed in this work is not suffered from such constraints. The
results of applying the trained neural network model to the test
data indicate that the method has a very good interpolation and



R. Eslamloueyan, M.H. Khademi / International Journal of Thermal Sciences 48 (2009) 1094–1101 1101
extrapolation capabilities with respect to not only the temperature
ranges but also the molecular types.
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